•3 min read
Summarize PDFs at Scale
Build an automated system to process and summarize large volumes of PDF documents using AI.
PDF ProcessingAutomationDocument AI
Summarize PDFs at Scale
Build an automated system to process and summarize large volumes of PDF documents using AI.
Overview
This playbook guides you through creating a scalable PDF summarization system that can:
- Process hundreds of PDFs automatically
- Extract key information and insights
- Generate consistent summaries
- Handle various PDF formats and layouts
Prerequisites
- Python 3.8+
- OpenAI API key
- Basic knowledge of document processing
Step 1: Environment Setup
pip install pypdf2 openai python-dotenv
Step 2: PDF Processing Pipeline
Create the core processing logic:
import PyPDF2
import openai
from pathlib import Path
class PDFSummarizer:
def __init__(self, api_key):
openai.api_key = api_key
def extract_text(self, pdf_path):
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def summarize(self, text, max_length=500):
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "Summarize the following document concisely."},
{"role": "user", "content": text[:4000]} # Truncate for token limits
],
max_tokens=max_length
)
return response.choices[0].message.content
Step 3: Batch Processing
Implement batch processing for multiple files:
def process_batch(self, pdf_directory):
results = []
pdf_files = Path(pdf_directory).glob("*.pdf")
for pdf_file in pdf_files:
try:
text = self.extract_text(pdf_file)
summary = self.summarize(text)
results.append({
'file': pdf_file.name,
'summary': summary,
'status': 'success'
})
except Exception as e:
results.append({
'file': pdf_file.name,
'error': str(e),
'status': 'failed'
})
return results
Step 4: Output Management
Save results in structured format:
import json
import csv
def save_results(self, results, output_format='json'):
if output_format == 'json':
with open('summaries.json', 'w') as f:
json.dump(results, f, indent=2)
elif output_format == 'csv':
with open('summaries.csv', 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['file', 'summary', 'status'])
writer.writeheader()
writer.writerows(results)
Step 5: Error Handling and Monitoring
Add robust error handling:
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def process_with_retry(self, pdf_file, max_retries=3):
for attempt in range(max_retries):
try:
text = self.extract_text(pdf_file)
summary = self.summarize(text)
return summary
except Exception as e:
logger.warning(f"Attempt {attempt + 1} failed for {pdf_file}: {e}")
if attempt == max_retries - 1:
raise e
Usage Example
# Initialize the summarizer
summarizer = PDFSummarizer(api_key="your-openai-key")
# Process a directory of PDFs
results = summarizer.process_batch("./documents")
# Save results
summarizer.save_results(results, 'json')
print(f"Processed {len(results)} documents")
Optimization Tips
- Chunking: For large documents, split into chunks and summarize each
- Caching: Cache results to avoid reprocessing
- Parallel Processing: Use threading for faster batch processing
- Quality Control: Implement summary quality checks
Troubleshooting
Common issues and solutions:
- Token Limits: Truncate or chunk large documents
- PDF Parsing Errors: Use alternative libraries like pdfplumber
- Rate Limits: Implement exponential backoff
- Memory Issues: Process files one at a time for large batches
Next Steps
- Add support for other document formats
- Implement custom summarization prompts
- Create a web interface
- Add database storage for results